
Class of

Computer Networks M

Luca Foschini

Academic year 2015/2016

Global Stream Processing

University of Bologna

Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Outline

A set of tools are available to express and
design a complex streaming architecture
to be immediately deployed

• Apache Storm

• Yahoo S4

…

• Large amounts of data 
Need for real-time views of data

– Social network trends, e.g., Twitter real-time search

– Website statistics, e.g., Google Analytics

– Intrusion detection systems, e.g., in most datacenters

• Process large amounts of data
– With latencies of few seconds

– With high throughput

Stream Processing Challenge

• Batch Processing  Need to wait for
entire computation on large dataset to
complete

• Not intended for long-running stream-
processing

Not MapReduce

Stream processing model

Stream processing
manages:
• Allocation
• Synchronization
• Communication

Application that
benefit most the
streaming model with
requirements:
• High computation

resource intensive
• Data parallelization
• Data time locality

kernel

kernel

kernel

kernelkernel

kernel

kernel

INPUTS

Classifier

Stream processing support functions

Main functions needed to support the
stream processing model:
• Resource allocation
• Data classification

Information routing
• Management of execution/processing

status

• Apache Project

• http://storm.apache.org/

• Highly active JVM project

• Multiple languages supported via API

– Python, Ruby, etc.

• Used by over 30 companies including

– Twitter: For personalization, search

– Flipboard: For generating custom feeds

– Weather Channel, WebMD, etc.

Enter Storm

• Tuples

• Streams

• Spouts

• Bolts

• Topologies

Storm Core Components

• An ordered list of elements

• E.g., <tweeter, tweet>
– E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>

– E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

• E.g., <URL, clicker-IP, date, time>
– E.g., <coursera.org, 101.102.103.104, 4/4/2014,

10:35:40>

– E.g., <coursera.org, 101.102.103.105, 4/4/2014,
10:35:42>

Tuple

Tuple

• Sequence of tuples
– Potentially unbounded in number of tuples

• Social network example:
– <“Miley Cyrus”, “Hey! Here’s my new song!”>,

<“Justin Bieber”, “Hey! Here’s MY new song!”>,

<“Rolling Stones”, “Hey! Here’s my old song that’s still
a super-hit!”>, …

• Website example:
– <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>,

<coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>,
…

Stream

Tuple Tuple Tuple

• A Storm entity (process) that is a source of streams

• Often reads from a crawler or DB

Spout

• A Storm entity (process) that
– Processes input streams

– Outputs more streams for other bolts

Bolt

• A directed graph of spouts and bolts (and output bolts)

• Corresponds to a Storm “application”

Topology

• Can have cycles if the application requires it

Topology

• Operations that can be performed
– Filter: forward only tuples which satisfy a condition

– Joins: When receiving two streams A and B,
output all pairs (A,B) which satisfy a condition

– Apply/transform: Modify each tuple according to a
function

– And many others

• But bolts need to process a lot of data
– Need to make them fast

Bolts come in many Flavors

• Have multiple processes (“tasks”) constitute a
bolt

• Incoming streams split among the tasks

• Typically each incoming tuple goes to one task
in the bolt
– Decided by “Grouping strategy”

• Three types of grouping are popular

Parallelizing Bolts

• Shuffle Grouping
– Streams are distributed evenly among the bolt’s tasks
– Round-robin fashion

• Fields Grouping
– Group a stream by a subset of its fields
– E.g., All tweets where twitter username starts with [A-

M,a-m,0-4] goes to task 1, and all tweets starting with
[N-Z,n-z,5-9] go to task 2

• All Grouping
– All tasks of bolt receive all input tuples
– Useful for joins

Grouping

• A tuple is considered failed when its
topology (graph) of resulting tuples fails to
be fully processed within a specified
timeout

• Anchoring: Anchor an output to one or
more input tuples
– Failure of one tuple causes one or more

tuples to replayed

Failures

• Emit(tuple, output)
– Emits an output tuple, perhaps anchored on an input

tuple (first argument)

• Ack(tuple)
– Acknowledge that you (bolt) finished processing a tuple

• Fail(tuple)
– Immediately fail the spout tuple at the root of tuple

topology if there is an exception from the database, etc.

• Must remember to ack/fail each tuple
– Each tuple consumes memory. Failure to do so results

in memory leaks.

API For Fault-Tolerance (OutputCollector)

Storm Cluster

Several components in a Cluster

• Master node
– Runs a daemon called Nimbus
– Responsible for

• Distributing code around cluster
• Assigning tasks to machines
• Monitoring for failures of machines

• Worker node
– Runs on a machine (server)
– Runs a daemon called Supervisor
– Listens for work assigned to its machines
– Runs “Executors”(which contain groups of tasks)

• Zookeeper
– Coordinates Nimbus and Supervisors communication
– All state of Supervisor and Nimbus is kept here

Storm Cluster

Twitter Heron System

• Fixes the inefficiencies of Storm’s acking mechanism
(among other things)

• Uses backpressure: a congested downstream tuple
will ask upstream tuples to slow or stop sending tuples

1. TCP Backpressure: uses TCP windowing mechanism
to propagate backpressure
2. Spout Backpressure: node stops reading from its
upstream spouts
3. Stage by Stage Backpressure: think of the topology as
stage-based, and propagate back via stages
• Use:

– Spout+TCP, or
– Stage by Stage + TCP

• Beats Storm throughput handily (see Heron paper)

S4 Platform

Simple Scalable Streaming System (S4)

Design goals:
• Scalability
• Decentralization
• Fault-tolerance (partially supported)
• Elasticity
• Extensibility
• Object oriented

S4 Platform - architecture

Comm Module

Core Module

Comm Module

Core Module

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver Ex
te
n
si
o
n

M
o
d
u
le
s

S4 Platform - application

PE

PEPE

PE

PE

PE PE

PE

Output Output Output

Input Input Input

Stream 1

Stream 2

Stream 3

S4 Platform – overall view

ZooKeeper cluster

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

Ex
te
n
si
o
n

M
o
d
u
le
s

Nodo 1

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

Ex
te
n
si
o
n

M
o
d
u
le
s

Nodo N

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

Ex
te
n
si
o
n

M
o
d
u
le
s

Nodo 2

Load balancing module

DLock RPC

DAL

Routing table
manager

Load Index
Manager

Route reservation
manager

Initial value
generator

Load balancing support & open issues

Not really supported…
• There is no real load

balancing support
• Load sharing on cluster

nodes based on very simple
hash functions

• No guarantees of effectively
balanced load sharding

Input

Hash Evaluation

Hash mod N° nodes

output

An example: Word Count (sounds familiar?)

For more details
refer to the S4
presentation paper:
L. Neumeyer et al.,
“S4: Distributed
Stream Computing
Platform”, KDCloud
2010.

